Detectors for proton beam-
dump experiments
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https://indico.fnal.gov/conferenceDisplay.py?confId=6248

No motivation.
Proton beam —dump examples.

One example of using existing detectors.
Two designs for new detectors.



1 GeV Program of Project X Stage 1 Stage 2
""""""""""""""""" 120 60 120 60
Beam Power 984 | 984 980 980
Protons per second 6.2x10" |  6.2x10" 6.2x10" 6.2x10"
Pulselength CW CW CW CW
Bunch spacing** Programmable Programmable
Bunch length (FWHM) .04 .04 .04 .04

SNS

Spallation Neutrino
Source

Liquid Mercury target




Medium and High Energy sources

* FNAL BOOSTER

* FNAL NuMI
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Figure 1: A schematic drawing of the MiniBooNE experiment.
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Large number of protons on target (102 POT per year).
Project X would provide 10x the current intensity .

Exotic particle flux is very forward collimated and
remains constant with distance from the target.

Fair distance from the target
Backgrounds from neutrino interactions are low (~1/R?2),

PI‘OpOS&l at SNS Workshop on Neutrinos at the Spallation Neutron Source
May 3-4, 2012 at Oak Ridge National Laboratory
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http://arxiv.org/abs/1211.5199

Designs are sensitive to energy and direction
reconstruction of protons, neutrons, muons,
electrons, and photons that are produced by exotic
particle decay/scatter.

There have been observed significant unexplained
electron/photon-like excesses in both neutrino and
anti-neutrino mode.

Good beam and event reconstruction timing (~nsec)

Geometry restriction make the sensitive to heavy
(subluminal) particles (> MeV).
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Decay Path sensitivity at different beam dumps

Decay path curves for ALP energy 1 GeV :
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Decay-path scans: Movable detectors

» Fully active scintillator bar based. SciBar from K2K exp.
e Example: SciBar= 15k bars, .
1x2cm? x 3m,1mm WLS fibers, 64 Extruded W
layers. scintillator

o Example of cost from SciNOvA
report $ 2M and 23 month
construction. Multi-anode

* For a truck-able system on the PMT
surface an extra active cosmic
veto is necessary. -,

* Limitation in weight.
- Can be divided to platforms
- (1 detector +1 electronics)
* Much wider decay-path scans.

- Covers wider ranges of the
parameter phase-space.

A.H. IF5 ANL 4/26/2013

shifting fiber




Dark Photon detector

Take advantage of the B-L

coupling of D-Photons. €—————1—— Muon veto

Positioned in front of the particle | Dipole magnet
detector.
Use of the FNAL new High Field VT | detector
dipoles.

B=11.5T, L=2m.
Center space filled with a
detection system.

Detector R&D required:

What kind of scintillator rods can Super-
operate at LHe temperatures. conducting

Can a volume with liquefied gas coﬂsk

work?

o LXe, LAr, ... L??
Readout R&D

Can we use APD or SiPM?

Can we use Micromegas? :
Cooling system

4/26/2013




Active muon veto design.

Cosmicf - Yejectec
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Scintillator based/2x4 cm?/ 6-10 layers/
X-Y orientation.

Covers large areas economically.

Top +Bottom arrays can perform muon-
y tomography.

- Proven technique to id cosmic tracks
within 1mm.

Readout by the same method and DAQ
system.

A.H. IF5 ANL 4/26/2013




Movable detector at the ORNL SNS

proposal from 2012:arXiv:1211.5199
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Rails can carry a detector as big as a container, larger acceptance options.
Permanent arrangement may not be problem (different state, and different
funding source than the FNAL)



http://arxiv.org/abs/1211.5199

Truck-able detector at FNAL

Proposed location of Project X
3-GeV experimental campus

1 Proton beam from 3-GeV linac

2 Switchyard: beam distribution

3 Charged kaon decay experiment
4 Neutral kaon decay experiment

6 Experiments with atomic nuclei Project X would provide
a 3-GeV proton beam for

6 Advanced muon-to-electron conversion experiment experiments with kaons,
7 Wiison Hall and existing bulidings muons, and atomic nuclel.

Positioned in a straight line with the 3GeV beam beyond the beam dump of
the muon campus.
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Experimental strategy: Economy reasoning favors multi-purpose experiments.
Small : in particle physics scales (and costs).
Making a detector mobile can scan various ranges of mass.
It improves sensitivity ( for each mass, scans lifetime ranges instead of a value).
Can be included in smaller grants, built by smaller collaborations.
Beam-dump: rarely prime area for experiments
o Can share source (dump) with other experimental efforts/ideas.

Detector design: Tracker /calorimeter combination.
Popular around neutrino experiments, proven technique.
Good vertex and mass reconstruction can scan decay vertices closer to the interaction point.
Slower /heavier particles. Increase the scanned phase space.
Signature: Di-particle with vertex in the beam-line.
Electron, muon, or pion pairs depending on the mass.
Mass reconstruction provides the particle mass.
Signals excess gives the coupling strength to the pair.
Life time and mass are measured independently from each other.
Overall measurement is also model independent.
Technologies needed
High magnetic fields. Will improve the sensitivity by B2.
Can be 16T/ 10T respectively with new materials.
Can add +1 or 2 T with cooling to 1.7 K
Detectors for vertex searches (pixel).
Fast, radiation hard.
Faster DAQ, High-level Triggering,



Extra slides

A.H. IF5 ANL 4/26/2013
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From beam o Y , Detector properties
simulations This is what it is
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measurement

SINDRUM: M ,. = 25-120MeV, BR ~107°
WASA: M,- =30- 90 MeV, BR ~107°
NOMAD : (M, ,P, )=(<95MeV, 4GeV)=>» BR ~107%5



* High granularity fully active

Examples:

SciBar from K2K/ PioDet or FDG from T2K ND280 project.

* Redesign parameters:
1X2 cm X 2m bars
Double the depth to 120 layers.
Added active veto for operation on the surfa
covering all 6 sides.

¢ Upgrade from the proposals:
SciBar@FNAL, hep-ex/0601022 of 2006.
SciNOVA P-1003, FNAL PAC 11/2010.
Leveraging existing tech.

Readout with Hamamatsu SiPMs.

Small DAQ from SciNOVA.
Slow controls as in MicroBooNE.
Analysis methodology from NOvVA.
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» Array of dipoles
Inspired by the IAXO exp.

» A 2x2 array + veto can fit on

a movable platform.

» By the time of proposal the
anticipated High Field
technology may achieve the
projected 15 T.
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Analyzing the

signal from NOvA ND
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Models predict the mass of the
article and the branching ratio

BR) from the primary I‘eaCtiOI] Particles in all generations ——
in the target. i Proton, neutrino, p [|Enies 5375
Many types/masses/sizes of I RS 124
particles available for simulatioc |
without creating an unknown o
ALP in GEANT 4
This basically the purpose of th |
search. N Jm

Workshop on Hidden Sectors from Physics generators.
1-5 Sept. 2013 : |

International Conference on Mathematical
Modeling in Physical Sciences, IC-MSQUARE
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